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 Learning from Texts:
◦ Skills can be acquired by reading texts.

◦ A single text might contain multiple skills.

 Probability of Learning:
◦ When reading a text, there is a certain probability of 

learning each skill mentioned.

 Repetition and Mastery: 
◦ By repeatedly reading a large number of texts, many skills 

can be learned over time.

 Questions to Consider:
◦ How many readings are required to ensure the emergence of 

learned skills?

◦ Are these learned skills interconnected for inference?
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 We define that a skill s in a semantic language is  learned

if the learner can determine whether the skill s is present 

in any given text t. 

 We consider a text t to be understood by a learner if all 

the skills contained within t are learned by the learner.

 Learning a semantic language is equivalent to learning 

the bipartite graph.



A red skill node is learned, and this text is understood by 
a learner since the skills contained are learned by the 
learner.
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 Collecting training texts : Sample a subset of texts D

from the set of texts T. 

 Let R = |D|/|S| be the ratio of the number of training texts 

to the number of skills.

 Iterative training: 

◦ When a text is presented to a learner, a skill in that 

text might be learned with a certain probability.

◦ By repeatedly presenting a large number of training 

texts to a learner, a fraction of skills can be learned.



 The emergence of learned skills when the ratio R exceeds 

a certain threshold. 

 Once this threshold is exceeded, the testing error, defined 

as the probability of whether the learner can understand a 

randomly selected text, drops sharply. 

 This also provides the scaling law of the testing error 

with respect to the ratio R.



 (A1)

 (A2)

 The sampled skill-text bipartite graph is a random bipartite 
graph with |S| skill nodes on one side and |D| text nodes on 
the other side.



 (i)

 (ii)

 Such a bipartite graph is a random bipartite graph, as per 

the configuration model, where the degree distribution of 

the text nodes (respectively, skill nodes) is Poisson with 

mean c (respectively, cR). 



1. Use the degree distributions to generate “stubs” for skill 
nodes and text nodes.
2. These “stubs” are randomly connected to form edges. 

Poisson(c)

Poisson(cR)



 To a learner, all skills are novel before training. 

 After presenting a text t to the learner, a skill s in the text 

t might be learned. 

 After repeatedly presenting the training set of |D| texts, 

we aim to determine the fraction of skills that are learned 

by the learner.



 An abstract learner is called a 1-skill learner if it can learn 

a novel skill s by being presented with a text t where the 

skill s is the only novel skill in the text t.

 Once a skill s is learned, the learner is able to identify the 

skill s appearing in any other texts.



 For each iteration, we present the |D| sampled texts to the 1-
skill learner in parallel. 

 In the first iteration, a text containing only one skill is used to 
learn the skill in that text. Texts containing more than one skill 
do not contribute to learning in the first iteration. 

 Once a skill s is learned by the 1-skill learner, the number of 
novel skills in other texts containing s is reduced by 1. 

 In other words, the edges connected to the skill node s can be 
removed from the skill-text bipartite graph. 

 In the second iteration, texts with only one novel skill are used 
to learn the skills in those texts. 

 As in the first iteration, skills learned in the second iteration 
can be used to remove the corresponding edges in the skill-text 
bipartite graph. 

 This iteration process is repeated until no more novel skills 
can be learned.



This SCNS training process is mathematically equivalent to the iterative decoding 
approach in LDPC codes over the binary erasure channel (BEC) and Irregular 
Repetition Slotted ALOHA (IRSA) 



 Let 𝑞(𝑖) (respectively, 𝑝(𝑖)) be the probability that the skill 

end (respectively, the text end) of a randomly selected 

edge is not learned after the 𝑖𝑡ℎ SCNS iteration of 

training.



 The probability that a randomly selected skill is learned is

 For testing, we randomly select a text t from T (not 

included in the |D| training texts).

 Assume that this randomly selected text has the same 

distribution as those in the training data, i.e., it also 

satisfies (A1) and (A2). The probability of testing error is 



c is the average number of skills in a text



 The definition of Poisson learners is analogous to that of 

Poisson receivers.

 The 1-skill learner is a Poisson learner with the success 

probability

 The 2-skill learner, where skills in a text can be learned if 

the number of novel skills does not exceed two, is a 

Poisson learner with the success probability

C.-H. Yu, L. Huang, C.-S. Chang, and D.-S. Lee, “Poisson receivers: a probabilistic 
framework for analyzing coded random access,” IEEE/ACM Transactions on Networking, 
vol. 29, no. 2, pp. 862–875, 2021.



The percolation thresholds for the 2-skill learner are significantly lower 
than those for the 1-skill learner.



 When the training is complete, a learner can not only learn a 
fraction of skills but also learn the associations between these 
learned skills.

 Two learned skills are associated if they appear in the same 
text.

 Skill association graph: adding an edge between two learned
skill nodes if they appear in the same text.

 Knowing the structure of the skill association graph is crucial, 
as it can be utilized for inference purposes.

 Analogous to giving an LLM a prompt in the form of a text 
with a set of skills and asking the LLM to predict the next skill 
and generate a text based on the predicted skill.
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 A giant component in a random graph is a connected 

subgraph whose size is proportional to the size of the 

graph. 

 There exists at most one giant component in a random 

graph.

 The rest of components are called small components. 

 One important property of a random graph is that small 

components are trees with high probability.



 Assume that skill nodes are learned independently with 

probability

 Let       be the probability that a skill node is connected to 

a small component via one of  its edges.

 Let       be the probability that a text node is connected to 

a small component via one of  its edges.
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 A randomly selected skill node is in the giant component 

if the skill node is learned and  at least one of its edges is 

connected to the giant component.

c is the average number of skills in a text



 One common approach to train a domain-specific LLM is 
to adopt a pre-trained model, commonly referred to as a 
foundation model or a basic model, and fine tune it with 
additional domain-specific texts.

 Two classes of skills: the class of basic skills and the 
class of domain-specific skills.

 A prerequisite of learning a domain-specific skill requires 
learning a random number of basic skills first. 





 There are two thresholds for achieving low testing errors 

in a domain-specific task: 

 (i) a large number of basic skills are learned when the 

number of basic texts exceeds the threshold in the 

foundation model, and 

 (ii) a large number of domain-specific skills are learned 

when the number of domain-specific texts exceeds the 

threshold in the fine-tuning model.



 The motivation for the extension to the multiple class 

setting  is the existence of multiple subjects in texts, such 

as math, physics, chemistry, law, etc.



 Introduce Poisson learners with multiple classes of skills 

by Poisson receivers with multiple classes of users and 

receivers.

 Repeatedly present the multiple classes of texts to a 

Poisson learner with multiple classes of skills to learn the 

skills.

 Extend the density evolution analysis to the multiple 

classes of skills and texts and derive a system of coupled

nonlinear equations.

C.-M. Chang, Y.-J. Lin, C.-S. Chang, and D.-S. Lee, “On the stability regions of coded 
Poisson receivers with multiple classes of users and receivers,” IEEE/ACM Transactions on 
Networking, vol. 31, no. 1, pp. 234–247, 2022.





semantic transmitter semantic receiver
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 (Level A) Lossless compression of a text requires exact 

recovery of the sequence of tokens in a text. 

 (Level B) However, if our interest lies in recovering only 

the semantic meaning of a text, we might be able to 

compress it using fewer bits than required for lossless 

compression. 

W. Weaver, “Recent contributions to the mathematical theory of 
communication,” ETC: a review of general semantics, pp. 261–281, 1953.



 A compression method is termed a semantic compression 

method if the recovered text is semantically equivalent to 

the original text. 

 An abstract learner is called generative if it can generate a 

text of tokens given a set of learned skills. 

 Here we assume that the abstract learners discussed in the 

talk are also generative. 

53



 Once the training is complete, the expected number of 

skills learned is

 Index the learned skills.

 The number of bits required to represent a learned skill is 

 On average, there are c skills in a text. 

 For a text understood by the learner, it requires on 

average                                                    bits  to encode 

the text.
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 Conversely, if a randomly selected text is not understood 

by the learner, it can be encoded using a lossless 

compression encoder. 

 Suppose the lossless compression encoder requires, on 

average, z bits to compress a text. 

 Then the semantic compression method described above 

requires, on average

bits for a text.
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 By Shannon's analysis, the entropy per word in the 

English language is approximately 11.82 bits. 

 By assuming that an average sentence has approximately 

20 words, the number of bits required to represent a text 

is approximately 𝑧 = 236.4 bits.

 With R sufficiently large such that

 With c set as 5, a compression gain is obtained as long as 

C. E. Shannon, “Prediction and entropy of printed english,” The Bell System Technical 
Journal, vol. 30, no. 1, pp. 50–64, 1951.
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 Recent literature on semantic communications has proposed an end-
to-end approach for jointly training the semantic and channel 
encoder/decoder. 

 This method is claimed to be superior to separate training. 

 However, the end-to-end approach does not scale efficiently with 
data size. 

 A large dataset is necessary for training to exhibit the emergence of 
semantic capability. 

 For the transmission of texts from a general semantic language, an 
LLM model is required at both the semantic transmitter and receiver, 
which would be difficult to retrain and adapt to varying physical 
channels. 

 In light of this, a modular design (i.e., separate source and channel 
coding) may be more effective for semantic communication in 
practice.

H. Xie, Z. Qin, G. Y. Li, and B.-H. Juang, “Deep learning enabled semantic communication systems,” 

IEEE Transactions on Signal Processing, vol. 69, pp. 2663–2675, 2021.
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 Learning can be viewed as an iterative decoding process.

 There is a percolation threshold for an abstract learner.

 Once the number of training texts exceeds this threshold, 
the learner shows the emergence of capabilities (many 
skills are learned). 

 Moreover, these learned skills are associated and form 
giant components in the skill association graph. 

 For multiple classes of coupled texts, there is a 
simultaneous emergence of multiple classes of skills.

 Learned skills could be used for semantic compression 
and communication.
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